上海如海光电科技有限公司

手机官网

|

简体中文

|

English
资 讯
News Center

您的位置: 如海光电 首 页 > 资 讯

拉曼光谱仪的原理

发布日期:2023-06-28     浏览:1476次

  拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。作为分子光谱领域最为活跃的仪器类别之一,拉曼光谱仪器的应用也越来越光。下面小编,给您介绍一下拉曼光谱分析仪的原理及结构。

  激光拉曼光谱原理

  当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利(Rayleigh)散射;还有一种散射光,它约占总散射光强度的10^-6~10^-10,该散射光不仅传播方向发生了改变,而且该散射光的频率也发生了改变,从而不同于激发光(入射光)的频率,因此称该散射光为拉曼(Raman)散射。在拉曼散射中,散射光频率相对入射光频率减少的,称之为斯托克斯散射,因此相反的情况,频率增加的散射,称为反斯托克斯散射,斯托克斯散射通常要比反斯托克斯散射强得多,拉曼光谱仪通常大多测定的是斯托克斯散射,也统称为拉曼散射。

  斯托克斯线(Stokes):基态分子跃迁到虚能级后不会到原处基态,而落到另一较高能级发射光子,发射的新光子能量hv‘显然小于入射光子能量hv,△V就是拉曼散射光谱的频率位移。反斯托克斯线(anti-Stokes):发射光子频率高于原入射光子频率。

  拉曼位移(Raman shift):△V即散射光频率与激发光频之差。拉曼位移与入射光频率无关,它只与散射分子本身的结构有关。拉曼散射是由于分子极化率的改变而产生的(电子云发生变化)。拉曼位移取决于分子振动能级的变化,不同化学键或基团有特征的分子振动,ΔE反映了指定能级的变化,因此与之对应的拉曼位移也是特征的。这是拉曼光谱可以作为分子结构定性分析的依据。

  以上就是上海如海光电科技有限公司对于拉曼光谱仪的原理的见解,希望对您有所帮助。

1687935942109310.jpg