发布日期:2022-03-11 |
绿色光子学拉曼光谱
当大多数人听到“绿色光子学”这个词时,他们会立即想到绿色激光笔。然而,绿色光子学不仅仅是波长在 500 到 550 nm 之间的激光束。化石燃料枯竭对我们的能源供应构成的威胁需要在技术开发方面进行新的创新,以维持我们当前受技术驱动的生活方式。光子技术将在该领域发挥越来越重要的作用,并且已经处于许多全球计划的前沿,从用于太阳能捕获的光伏材料的基础研究到创新低功率照明的开发。
在 Semrock,我们越来越多地参与这场“绿色”革命,与研究实验室和制造商合作,为他们提供**的滤光片,以满足他们的研发需求。Semrock 发挥关键作用的一个关键领域如下所示:太阳能电池检测。
使用拉曼光谱检查太阳能电池
太阳能电池等光收集技术的最终目标是收集尽可能多的阳光,并将这些光有效地转化为有用的电能。开发基于硅的高转换效率太阳能电池是当前光伏 (PV) 技术的核心。为了实现更高的转换效率,需要高度结晶、无缺陷和无应变的硅膜/层。然而,同样具有挑战性的是采用可靠的定量分析工具来监控和了解硅材料在制造后的表现。拉曼光谱就是这样一种工具,广泛用于太阳能电池行业,用于监测为 PV 电池制造的硅的质量。了解材料结晶度对于用单晶硅制造太阳能电池至关重要,因为非晶硅的存在会导致转换效率降低。拉曼光谱是区分和量化硅中结晶度的绝佳工具。在晶体硅中,键角、键强度和键能非常均匀和有序。因此,高度结晶的硅具有非常尖锐的峰,例如集中在 ~ 520 cm-1 处的峰。在非晶(即非晶)硅中,键角、键强度和键能会发生变化,导致在 480 cm-1 附近产生广泛的漫射光谱特征。
图 1:了解硅中的结晶度:从硅样品区域测量的拉曼光谱显示存在高度结晶(橙色)和非结晶(绿色、青色、红色)材料。
量化太阳能电池材料中的热应力和界面应力的能力至关重要。压力会显着影响光伏电池的转换效率。因此,了解应力位于何处、它们如何影响电池性能以及最终如何控制它们以提高工艺良率至关重要。拉曼光谱通过监测样品上 520 cm-1 峰的光谱位置,可以直接测量硅基太阳能电池中的应力(或应变),从中可以生成具有亚微米空间分辨率的应力图。因此,拉曼光谱提供了对太阳能电池加工的直接洞察,并防止效率较低的电池退出生产。
图 2:映射硅中的应力:通过从硅晶片中的激光钻孔监测以 ~520 cm-1 为中心的拉曼峰位置生成的应力图。因此,工程师可以评估精确的钻井参数,以产生最低的应力并保持高转换效率。
用于太阳能电池的替代和高度研究的材料是碳化硅和铜铟镓二硒化物,或 CIGS。鉴于 CGIS 是一种合金,它可以用每个单独成分的不同混合物制造。使用具有陡峭边缘和小跃迁宽度的滤光片的高性能拉曼光谱可以检测到比硅的 520 cm-1 峰更靠近激光线 (< 190 cm-1) 的低能量振动模式。通过监测 172 cm-1 附近的拉曼峰,可以量化铟和镓的浓度并生成整个 CIGS 薄膜的合金异质性图。
图 3:替代太阳能材料的拉曼光谱:使用高性能边缘滤波器的拉曼光谱可用于精确监测铜铟镓二硒 (CIGS) 太阳能电池薄膜中的铟和镓合金成分。
请您回答上面的问题,以让我们确保您是真实的访问者, 而不是某些自动的垃圾注册程序。 |