发布日期:2022-03-14 |
将光学推向**
Ø新的台式光源使 10-100 纳米级的应用变为现实
Ø极紫外线应用包括计量学、纳米级成像和电子光谱学
Ø极紫外线系统通常采用反射光学系统因为折射系统的光吸收率高
Ø表面粗糙度至关重要因为较短波长处的散射通常更高
极紫外线 (EUV) 辐射包括在 X 射线和深紫外线 (DUV) 光谱区域之间约 10nm 至 100nm 的波长带。随着极紫外线领域(包括光刻技术、纳米级成像和光谱学等)中对于许多应用的需求日趋紧迫,最近均已着手开发紧凑型极紫外线光源。这一努力为几种极紫外线光源带来了商业可用性.
几乎所有材料都能够完全吸收极紫外线辐射,因此光学元件几乎都是反射,而不是透射的。由于波长很短,因此对极紫外线光学元件表面的质量要求比可见光元件的要求更高。虽然由于其苛刻的要求,生产极紫外线光学元件并非易事,但因极紫外线辐射在高分辨率成像、光谱学和材料加工等方面的优势,仍然值得为此付出努力.
极紫外线辐射来源
**个在实践中应用的极紫外线辐射源属于大型设备,仅供大型研究实验室和光刻技术公司使用,但极紫外线技术的最新进展已经为更小巧和更便捷的台式极紫外线系统开辟了道路。高谐波产生 (HHG) 系统和毛细管放电激光器是两种更有前景的新型极紫外线台式光源,能产生低散射度的相干辐射束.
极紫外线光学的应用
新的紧凑型极紫外线光源正衍生出大量新兴的极紫外线应用,包括高分辨率成像、电子光谱、分子和固态动力学研究以及纳米加工技术.
极紫外线成像
极紫外线辐射是相干衍射成像 (CDI) 的理想选择,相干衍射成像这种成像技术,能够实现低至 0.5nm 的分辨率。相干衍射成像用于分析微小结构,如纳米管和纳米晶体。在相干衍射成像中,反射镜用于将极紫外线光束引导到物体上。表面上方或甚至下方的特征衍射辐射,再由附近的电荷耦合探测器记录下来。然后在软件中对记录下来的衍射图案进行处理,产生原始物体的 2D 或 3D 图像。因为反射镜和衍射被用于代替透射透镜,所以最终图像受到衍射限制且几乎没有像差。衍射极限分辨率与波长成正比,因此极紫外线辐射的短波长进一步提高了分辨率。相干衍射成像是一种非接触式成像技术,比原子力显微镜等类似技术更快,可在约一分钟内捕获图像。极紫外线相干衍射成像形成的高分辨率正在突破目前的成像技术限制.
图 1:典型极紫外线相干衍射成像设置
极紫外线光学和光电子能谱
极紫外线光谱可以探测到用其他光谱技术无法探测到的能量水平,对许多研究应用具有价值。极紫外线辐射用于光电发射光谱,其通过测量光电效应所产生的电子的能量来确定固体、液体或气体中的电子能量。极紫外线光谱用于核聚变研究,因为在聚变实验中发现的大多数等离子体杂质所释放的辐射在 1-50nm 之间。极紫外线辐射的短波长还能使极紫外线光谱系统确定结构化对象中特定元素的确切位置。有关极紫外线光谱学的研究有可能对使用核聚变的材料科学和能源产生重大影响.
图 2:极紫外线辐射处于 X 射线和紫外光谱区域之间
极紫外线纳米加工
小之又小的微结构和纳米结构的加工能力,对于纳米技术的发展来说至关重要。极紫外线纳米加工仍处于发展的早期阶段,但对于生成和修改纳米级结构来说,这是一项有前景的技术。聚焦光斑尺寸与波长成正比,因此极紫外线纳米加工系统比使用更长波长的系统有更高的空间分辨率。大多数材料中极紫外线辐射的短吸收深度也能导致能量的定位,便于蚀刻极其精细的特征。纳米技术有可能对社会产生重大影响,改进医疗设备及其程序、制造业方式,能量系统和电子产品等.
图 3:
纳米加工是纳米电子学、纳米医学和生物材料等许多新兴应用的关键部分
用于极紫外线应用的光学元件
极紫外线系统应处于真空环境中,因为低于 100nm 的波长不能通过空气传播。同样,极紫外线辐射在几乎所有材料中都具有极高的吸收率,因此极紫外线应用中的光学元件几乎总是具有反射性。短波长的散射更高,这使得表面的粗糙度、平整度和表面公差对极紫外线光学元件很重要。在极紫外线应用中常用的反射镜是多层布拉格反射镜,两种不同材质的周期性堆叠导致特定波长进行干涉和反射。部分入射光束在堆叠的每个界面处反射。极紫外线多层反射镜具有非常窄的带宽,大约 1nm,这种类型的极紫外线光学元件需要与光源的波长特别匹配.
图 4:λ/4 多层反射镜的结构。极紫外反射镜通常具有约 50 个对开层.
请您回答上面的问题,以让我们确保您是真实的访问者, 而不是某些自动的垃圾注册程序。 |